50 research outputs found

    Introduction to the special issue on codes on graphs and iterative algorithms

    Full text link

    Zero temperature solutions of the Edwards-Anderson model in random Husimi Lattices

    Full text link
    We solve the Edwards-Anderson model (EA) in different Husimi lattices. We show that, at T=0, the structure of the solution space depends on the parity of the loop sizes. Husimi lattices with odd loop sizes have always a trivial paramagnetic solution stable under 1RSB perturbations while, in Husimi lattices with even loop sizes, this solution is absent. The range of stability under 1RSB perturbations of this and other RS solutions is computed analytically (when possible) or numerically. We compute the free-energy, the complexity and the ground state energy of different Husimi lattices at the level of the 1RSB approximation. We also show, when the fraction of ferromagnetic couplings increases, the existence, first, of a discontinuous transition from a paramagnetic to a spin glass phase and latter of a continuous transition from a spin glass to a ferromagnetic phase.Comment: 20 pages, 10 figures (v3: Corrected analysis of transitions. Appendix proof fixed

    Annotation of the modular polyketide synthase and nonribosomal peptide synthetase gene clusters in the genome of Streptomyces tsukubaensis NRRL18488

    Get PDF
    et al.The high G+C content and large genome size make the sequencing and assembly of Streptomyces genomes more difficult than for other bacteria. Many pharmaceutically important natural products are synthesized by modular polyketide synthases (PKSs) and nonribosomal peptide synthetases (NRPSs). The analysis of such gene clusters is difficult if the genome sequence is not of the highest quality, because clusters can be distributed over several contigs, and sequencing errors can introduce apparent frameshifts into the large PKS and NRPS proteins. An additional problem is that the modular nature of the clusters results in the presence of imperfect repeats, which may cause assembly errors. The genome sequence of Streptomyces tsukubaensis NRRL18488 was scanned for potential PKS and NRPS modular clusters. A phylogenetic approach was used to identify multiple contigs belonging to the same cluster. Four PKS clusters and six NRPS clusters were identified. Contigs containing cluster sequences were analyzed in detail by using the ClustScan program, which suggested the order and orientation of the contigs. The sequencing of the appropriate PCR products confirmed the ordering and allowed the correction of apparent frameshifts resulting from sequencing errors. The product chemistry of such correctly assembled clusters could also be predicted. The analysis of one PKS cluster showed that it should produce a bafilomycin-like compound, and reverse transcription (RT)-PCR was used to show that the cluster was transcribed. © 2012, American Society for Microbiology.We thank the Government of Slovenia, Ministry of Higher Education, Science and Technology (Slovenian Research Agency [ARRS]), for the award of grant no. J4-9331 and L4-2188 to H.P. We also thank the Ministry of the Economy, the JAPTI Agency, and the European Social Fund (contract no. 102/2008) for the funds awarded for the employment of G.K. This work was also funded by a cooperation grant of the German Academic Exchange Service (DAAD) and the Ministry of Science, Education, and Sports, Republic of Croatia (to J.C. and D.H.), and by grant 09/5 (to D.H.) from the Croatian Science Foundation.Peer Reviewe

    Polynomial iterative algorithms for coloring and analyzing random graphs

    Get PDF
    We study the graph coloring problem over random graphs of finite average connectivity cc. Given a number qq of available colors, we find that graphs with low connectivity admit almost always a proper coloring whereas graphs with high connectivity are uncolorable. Depending on qq, we find the precise value of the critical average connectivity cqc_q. Moreover, we show that below cqc_q there exist a clustering phase c[cd,cq]c\in [c_d,c_q] in which ground states spontaneously divide into an exponential number of clusters. Furthermore, we extended our considerations to the case of single instances showing consistent results. This lead us to propose a new algorithm able to color in polynomial time random graphs in the hard but colorable region, i.e when c[cd,cq]c\in [c_d,c_q].Comment: 23 pages, 10 eps figure

    Score-Based Bayesian Skill Learning

    Full text link
    We extend the Bayesian skill rating system of TrueSkill to accommodate score-based match outcomes. TrueSkill has proven to be a very effective algorithm for matchmaking - the process of pairing competitors based on similar skill-level - in competitive online gaming. However, for the case of two teams/players, TrueSkill only learns from win, lose, or draw outcomes and cannot use additional match outcome information such as scores. To address this deficiency, we propose novel Bayesian graphical models as extensions of TrueSkill that (1) model player's offence and defence skills separately and (2) model how these offence and defence skills interact to generate score-based match outcomes. We derive efficient (approximate) Bayesian inference methods for inferring latent skills in these new models and evaluate them on three real data sets including Halo 2 XBox Live matches. Empirical evaluations demonstrate that the new score-based models (a) provide more accurate win/loss probability estimates than TrueSkill when training data is limited, (b) provide competitive and often better win/loss classification performance than TrueSkill, and (c) provide reasonable score outcome predictions with an appropriate choice of likelihood - prediction for which TrueSkill was not designed, but which can be useful in many applications. © 2012 Springer-Verlag

    Random subcubes as a toy model for constraint satisfaction problems

    Full text link
    We present an exactly solvable random-subcube model inspired by the structure of hard constraint satisfaction and optimization problems. Our model reproduces the structure of the solution space of the random k-satisfiability and k-coloring problems, and undergoes the same phase transitions as these problems. The comparison becomes quantitative in the large-k limit. Distance properties, as well the x-satisfiability threshold, are studied. The model is also generalized to define a continuous energy landscape useful for studying several aspects of glassy dynamics.Comment: 21 pages, 4 figure

    On the freezing of variables in random constraint satisfaction problems

    Full text link
    The set of solutions of random constraint satisfaction problems (zero energy groundstates of mean-field diluted spin glasses) undergoes several structural phase transitions as the amount of constraints is increased. This set first breaks down into a large number of well separated clusters. At the freezing transition, which is in general distinct from the clustering one, some variables (spins) take the same value in all solutions of a given cluster. In this paper we study the critical behavior around the freezing transition, which appears in the unfrozen phase as the divergence of the sizes of the rearrangements induced in response to the modification of a variable. The formalism is developed on generic constraint satisfaction problems and applied in particular to the random satisfiability of boolean formulas and to the coloring of random graphs. The computation is first performed in random tree ensembles, for which we underline a connection with percolation models and with the reconstruction problem of information theory. The validity of these results for the original random ensembles is then discussed in the framework of the cavity method.Comment: 32 pages, 7 figure

    Region graph partition function expansion and approximate free energy landscapes: Theory and some numerical results

    Full text link
    Graphical models for finite-dimensional spin glasses and real-world combinatorial optimization and satisfaction problems usually have an abundant number of short loops. The cluster variation method and its extension, the region graph method, are theoretical approaches for treating the complicated short-loop-induced local correlations. For graphical models represented by non-redundant or redundant region graphs, approximate free energy landscapes are constructed in this paper through the mathematical framework of region graph partition function expansion. Several free energy functionals are obtained, each of which use a set of probability distribution functions or functionals as order parameters. These probability distribution function/functionals are required to satisfy the region graph belief-propagation equation or the region graph survey-propagation equation to ensure vanishing correction contributions of region subgraphs with dangling edges. As a simple application of the general theory, we perform region graph belief-propagation simulations on the square-lattice ferromagnetic Ising model and the Edwards-Anderson model. Considerable improvements over the conventional Bethe-Peierls approximation are achieved. Collective domains of different sizes in the disordered and frustrated square lattice are identified by the message-passing procedure. Such collective domains and the frustrations among them are responsible for the low-temperature glass-like dynamical behaviors of the system.Comment: 30 pages, 11 figures. More discussion on redundant region graphs. To be published by Journal of Statistical Physic

    Factor Graph Inference Engine on the SpiNNaker Neural Computing System

    No full text

    A sequential decoder for linear block codes with a variable bias-term metric

    No full text
    corecore